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Chapter 1

Introduction

Packet radio networks (PRnet) provide data
communications by packet switching technology to mobile
users where direct radio or wire connection between the
source and destination users is not available. Like any
packet communication system, to analyze a packet radio
network, we first need to determine a model which can
represent the network topology. For the N-node radio
network, there are 2N(N"1)/2 range of possible topologies.
Moreover, when PRnet's are mobile, the topologies change
dynamically so that it is impossible to analyze the network
performance over all possible topologies. Clearly, no single
model can be formulated which incorporates all the
necessary parameters and leads to an optimum solution.
Therefore we must develop some representations of
network topologies which allow us to describe
mathematically a wide range of realistic network

topologies and use those to analyze the network operations.

Kleinrock and Silvester [8] identify the following
three prevalent assumptions used in modeling the
topological structure of PRnets: (1) regular structure, in

which nodes are considered to be located in some regular
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pattern on the plane; (2) a continuum of nodes, in which
nodes are considered to be continuously present throughout
the plane and network traffic is generated at some rate per
unit area; and (3) random locations, which nodes are
considered to be randomly distributed in the space of
interest. In this thesis we will focus on the random
location topology and attempt to develop a wuseful
approximation of the topological structure of realistic

packet radio networks.

There are two possible random location models which
can be used [3]. The Euclidean model assumes that the
transmission radius of nodes is fixed in conjunction with
an assumed Poisson distribution of locations, and therefore
the 1link existence 1is strictly a function of internode
distance. Thus, each node has a fixed transmission radius
and the resulting connectivity matrix describes a Euclidean
random graph as shown in figure 1-1. In the Euclidean
model, an implicit assumption 1is made that the
transmission range of a node is dominated by the free
space propagation of the radio signal, and the transmission
range is equal in all directions as represented in the "range

circles” of figure 1-1.

Another possible model is the Bernoulli random graph
model proposed by Dill [3]. This model assumes the

existence of each link is the result of a Bernoulli random
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Figure 1-1. Euclidean Random Graph of S Nodes. (from [3])




trial with probability P, which is independent of all other
links in the network. Thus, nodal positions are ignored, and
the adjacency matrix is determined by a series of

independent Bernoulli trials.

Th Bernoulli and Euclidean models represent the
extremes of possible topologies for real radio networks
[3]. For example, if the terrain is flat with minimal foliage
or man-made structures, or if the radio nodes are carefully
sited with their antennas placed on hilltops, then the
Euclidean model is an excellent approximation. If, however,
the terrain is rough and heavily foliated, or if the network
is operating in an urban or suburban environment, then the
Bernoulli model 1is preferable. The topology of real
networks is best described by a combination of these two

models.

In this thesis, we attempt to find some useful
approximations to describe the topologies of finite random
graphs for both the Euclidean and the Bernoulli models. We
are particularly interested 1in the path length
distributions, assuming a minimum hop routing algorithm
is available.( Many such algorithms exist, e.g. Dijkstra’'s

algorithm, the Bellman-Ford algorithm, etc. [12] ).

The structure of infinite random Euclidean graphs has

been studied extensively ( [4], [6] ) and results have been
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found for the probability of connectedness for very large
graph components. However, little theoretical work has
been done on finite Euclidean graphs. The difficulty in
analyzing the structure of finite Euclidean graphs results
from the boundary effects at the edges of the finite plane.
Rather than attempting to solve the more general
analytical problem, 1in this thesis we develop an
approximation technique which is based on a combination
of analytical and simulation results, and enables us to
predict the average minimum hop path length of a finite

Euclidean random graph quite accurately.

For finite Bernoulli random graphs, on the other hand,
there are no complicating edge effects, and an exact
solution for the path length distribution has been found by
Dill [3]. The algorithm, however, has a computation time
which is proportional to N3, and is computationally
infeasible for large networks. In this thesis we develop an
approximation to the exact solution which is quite
accurate for large networks, and is computationally

proportional to N.

Infinite Euclidean Graphs:

To construct a sample instance of an infinite Euclidean
network, we first pick nodes from the infinite plane by a

Poisson process with density A points per unit area. Next
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we connect each pair of nodes by a line if the pair is
separated by distance less than R, i.e., if the pair can hear
each other. Figure 1-2 shows two networks obtained from
the same random node pattern but with different values of
R. The parameter D in figure 1-2 represents the average
number of neighbors posessed by each node ( also called the
average degree); D=11R21,. Not all lines of the networkare

drawn, just enough to show the connected components
(called subnets). Naturally, subnets for larger D (D_) are

bigger than those for smaller D (Dg) but there is a
qualitative difference as well. The small subnets of the Ds
network are so merged together in the D_ network that
most of the nodes belong to a single large subnet. This
phenomenon suggests that there is an expected D in which
the subnet will merge to a single connected network with

infinitely many nodes in the infinite plane [6]. So the limit

Lim P(nN)=P (o)
N oo

(1.1)

need not be zero. |t represents the probability of belonging
to an infinite connected network. In [6] it is shown that

P(~) = O when D < 1.75 and P(«~) > O when D is sufficiently
large. Thus there exists a critical value De which is the

largest value of D for which P(«) = 0.
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Erdos and Renyi [4] have considered the issue of
connectivity for large random graphs and found that if the
average degree is 10g(N)+c then the probability of the graph

-C

being connected is e ® . Dewitt [2] has found a lower

bound on the probability of connectedness if the average

degree is 4log(N)+4loglog(N)+4c then Pr{connected) > e ©

However, the graphs that we are primarily concerned
with in this research are finite Euclidean graphs where the
existence of edges is significant, and is not an independent
process. Thus these results are asymptotically true for

large graphs, but may differ significantly for finite graphs.

In the finite Euclidean plane with a finite number of
nodes, the analysis of connectivity is much more complex
because of the edge effects. First, the nodes near the edges
of the plane tend to have fewer neighbors because their
range circle extends beyond the edge of the finite plane,
where no potentifal neighbors exist as shown on Fig 1-3.
Second, the edge effects wlill increase as when the number
of nodes increases. The questions are: does a criterfa still
exist for a minimum value of average degree D¢ despite the
edge effects, and is there some relationship between the
total number of nodes and average path length? Practically,
when we design a network, we would like to know the

minimum average degree that the network should have, i.e.
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the desired transmission radius, and thus the average path

length of the network.

"

In this thesis we focus on finite plane networks. We
introduce Gilbert's hex method to analyze the finite
Euclidean model and simplify Dill's result for the Bernoulli
model. Because analyzing the finite Euclidean model is
analytically difficult, we will use experimental simulation

data to obtain statistical results.

The following is the outline of this thesis. In chapter
2 we analyze the Bernoulli model and the Euclidean model.
In chapter 3 we use a computer simulation to find
statistical properties of the finite Euclidean model.
Finally the conclusions of this research are presented in

chapter 4.
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Chapter 2

Analysis of Bernoulli and Euclidean Models

2.1 Overview of Random Graph Models:

A simple undirected graph G=(V,E), without multiple
edges and self-loops, is defined by a finite node (vertices)
set V and a finite unordered node pair set E. An element of
E is called an "edge" and is represented by (u,v) (u, v € V,
u= v). From the definition, it holds that (u, v) = (v, u). For
an edge e = (u, v) = E, u and v are end points of the edge e.
The degree of a node v( = V) is the number of edges
adjacent to v, and so the average degree of the graph or
network G is defined as the average number of neighbors

which each node possesses.

2.1.1 Euclidean Random Graphs:

In a Euclidean random graph model of a radio network,
each node represents a station which is capable of
transmitting and receiving messages and each edge (line)
represents a bidirectional channel. Each node is assumed to
use a predetermined fixed radius for transmission so that
the network structure (topology) is completely specified.
In this thesis, we assume all stations have the same radius

so that the performance of the network will then be
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studied as the transmission radius is varied as shown in
figure 2-1. Any nodes falling within a circle of radius R
about a node will be able to hear that node and also will be
able to transmit to 1it. Clearly by increasing the
transmission radius, we can increase the average degree,
each node being able to communicate with more nodes. In
the 1limit, if the transmission radius spans the entire

network, then the graph becomes fully connected.

As the nodes are randomly distributed in a two
dimensional plane, the average number of nodes that will
be in a circle of radius R is assumed, most commonly, to be
described by a two dimensional Poisson distribution, and

the probability of finding k nodes in a region of area A is

AA

]' -
p-A4A) & (2.1.1)

il

Since A = mR2 {is the area covered by the transmission, we
can define D to be the average degree of the network (It is

also an indication of network connectivity).
D = AA = ATIR? (2.1.2)

In the unit square plane, we can assume A equal to N nodes

to estimate the average degree, i.e.
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D = N-A = NTIR2 (2.1.3)

The topology of the graph can be represented by a

binary connectivity matrix of the form:

1 if j and i adjacent in G;

A=(ay ) 5 e (2.1.4)
O otherwise.

From this adjacency matrix, we can generate the set of
minimum hop paths for the network by using any standard

routing algorithm.

We next introduce the definiftion of the connectivity
fraction and average path length. The connectivity fraction
of the random network, X, is defined as the fraction of
potential links which actually exist. The parameters, N, D,

X are related by the equation
D=X(N-1) (2.1.9)
Thus, a connectivity fraction of X=1 corresponds to a fully

connected network, and for the random network, the X is

characterized statistically by the two parameters N and D.
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The average path length is the expected number of
hops required to reach an arbitrary destination using a

minimum hop routing algorithm.

2.2 Bernoulli Model Analysis:

As stated in Chapter 1, nodal positions in the
Bernoulli model are ignored, and the existence ( or
nonexistence ) of any link is therefore not a function of
internode distance. Thus, with a Bernoulli random trial
probability P, the adjacency matrix is determined by a

series of independent Bernoulli trials.

In order to solve the distribution of (minimum hop)
path lengths in a Bernoulli random network, we begin by
choosing a random node, v, and finding the distribution of
path lengths from v to all other nodes. Then, since the
links in the Bernoulli random graph are independent, it
follows that this is the path length distribution for all
paths in the entire graph.

In [3] an exact recurrence relation solution to the
finite Bernoulli random graph has been found. |t proceeds in
successive levels, as shown graphically in figure 2-2 for
an example network of 7 nodes, where the state variables

are defined as:
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(a) i = the current level, or distance in hops from node

(b) ki = the number of nodes which are exactly i hops

(minimum) from node v.

(c) 14 = the number of nodes "left over” or greater than

i hops from node v.

The initial state (i=0) of the recurrence relation is
(0,1,N-1), i.e., since node v is O hops from itself, and all

other nodes are left over.

nodes at this level and 1lj-y nodes remaining, which is

simply a binomial term given by

Pl[k=k |k =k andl =] - (11—1)pk1(]_p )]1’—1—ki
[ TR R EERR B i-1 1—1] A i1
(2.2.1A)
where
R I (2.2.1B)
Py=1-(1-x) (2.2.1C)

A terminal node is reached whenever 1y = O (no more
nodes left, so all minimum hop paths have been found), or

ki = 0 (no nodes at this level, so the rest are disconnected).



17

The state probabilities are then computed by summing

over all previous states as

Pr [ ki = ki and ]] :]i ]
J
1 . ok
) Z1Pr[ki=j and'i-1=‘1-1] (k]i-1 )Dil:("pm )1 (2.2.2)
i=
where

J=N‘i"]1_| + 1 (2.2.3)
and Py=1 - (1-Xk (2.2.4)

It was found that the transition probability that there are
ki nodes at the next level, given that there are kj-
So the expected number of nodes at any level, |, is

computed as

Pr[ki=jandli=m] (2.2.5)
1

E{k1}= )

1

.Mz
3 M=

J

And finally, the path length distribution is found as

E{Ki
hi:Pr{pathis exactlgihops):—{ﬁ- (2.2.6)

N-1



State vector = (ik,j) where:

@ ‘@ i = number of hops from source

k = number of nodes at level i

j = number of nodes left (>level i)

Figure 2-2. Example recurrence relation for
determination of path length distribution for
a 7 node network. (from [3])
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From the (2.2.2) and (2.2.5) we see that the exact
computation of path length distribution of nodes is of
order N3 and very computationally intensive for large N,
since ki and kj-1 are not independent random variables.
Therefore, we wish to find some way to make an
approximation for this distribution which is

computationally efficient.

To do this, we first recall the initial values kg =1, Ig

= N-1, Po = X, then compute the expected value of k.

o

T ] K 14— K
Elkd =k = 2K (0)Rt (1-R) O T (2.2.74)
Ky=0 1
Let ki be the expected value of ky. Then
l]= IO—K1 (2.2.7B)
— I3
Pp= 1-Cl-%x) " (2.2.7C)

Continuing,
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] _ —
T = l Ik,
=2 K ( ‘)ﬁ%(]‘%) (2.2.8A)
k=0 K
2 2
STy (2.2.88)
— K.
p2=1-<1—x>2 (2.2.80)

So on, in general,

L U U S Il ¥

kl':z ki( k]_-1) Pi_](l— P]__]) (2.2.9A)
K=0 i

FRTLY (2.2.9B)

_ =

Po= 1-C1-X) ! (22.90)

For equation (2.2.9A), we make use of the formula

1

a - 2 j ( } ) pl (1-p)! I =1p (2.2.10)
j=0

which 1s simply the mean value of a binomial distribution.

The set of recurrence relation equations can then be

written as
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ki=]1-1p1_1 (2.2.11A)
T=1 -k (22.11B)
i i-1 i

Po= 1 -(1-%x) 1 (2.2.11C)

Finally, the average path length is given by

_ 2 K
hi = (N=1) (2.2.12)

From the (2.2.11) equations, with initial condition ko = 1,
lo = N-1, Po = X, successive expected values of ki can be
quickly computed recursively since each new value depends
only on its immediate predecessor. The problem is that in
general, kjand Ty are not integers, and thus the summation

and combinations are inexact.

In [3] the exact results for networks of 25, 50, 100
and 200 nodes are presented (see Table 2-1 and (Figure 2-
3). Table 2-2 presents the results using the approximation
method given here for 100 and 200 nodes. Comparing the
two methods, the errors are less than 2% (see Table 2-3
and Figure 2-4).
From the figure 2-3, we find that as the average degree D

increases, the average path 1length approaches a
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value of 2-X, since X of the paths are one hop, and all

remaining paths will be 2 hops with high probability.
2.3 Euclidean Model Analysis:

There are many methods (such as branching processes,

percolation processes) by which we can analyze infinite
Euclidean graphs. Here we introduce Gilbert's hex method
[6] to estimate D¢ It will be shown that this result is
close to our result derived expermentally via statistical

simulation in Chapter 3 for finite Euclidean graphs.

Hex is played on a honeycomb pattern of hexagonal
cells. A typical cell H(B,3) has its center at the point with
Cartesian coordinates:

A3

X:(B+—;——)b' Y:bb2 ,

(2.3.1)

where b is the separation between cell centers and 8 and 93



Table 2-1. Exact Minimum Hop Path Lenth
Distribution for 100, 200 Nodes (from [3]).

N=100}1 hop 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops |no path {mean*®
2%10.020 0.038 0.064 0.093 0.108 0.100 0.077 0.052 0.032 0.019 {0.397 |3.235
4%10.040 0.139 0.321 0.318 0.118 0.023 0.003 0.038 |3.303
6%10.060 0.280 0.503 0.145 0.008 0.004 |2.747
8%]0.080 0.430 0.463 0.027 0.001 |2.436
10%10.100 0.564 0.333 0.003 2.239

20%10.200 0.785 0.015 1815
30%10.300 0.700 1.700
40%10.400 0.600 1.600
50%|0.500 0.500 1.500
60%10.600 0.400 1.400
70%{0.700 0.300 1.300
80%}0.800 0.200 1.200
90%{0.900 0.100 1.100

100% |1.000 1.000

N=200] 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops|no path |mean*
2%/ 0.0200.075 0.221 0.357 0.222 0.057 0.009 0.001 0.038 [3.784
4%|0.0400.261 0.587 0.110 0.001 0.001 (2.770
6% 0.0600.480 0.457 0.003 2.404
8%|0.0800.662 0.258 2.178
10%/0.1000.777 0.123 2.023

20%|0.2000.800 1.800
30%|0.3000.700 1.700
40%| 0.400 0.600 1.600
50%| 0.500 0.500 1.500
60%] 0.600 0.400 1.400
70%{0.7000.300 1.300
80R%|0.8000.200 1.200
90R%|0.9000.100 1.100
100% | 1.000 1.000

*Mean is average path length of existing paths

24



Table 2-2. Estimation of Minimum Hop Path
Lenth Distribution for 100, 200 Nodes.

25

N=100{1 hop 2 hops 3 hops 4 hops S hops 6 hops 7 hops 8 hops 9 hops 10 hopsino path| mean*
2%10.020 0.038 0.007 0.113 0.154 0.160 0.122 0.070 0.033 0.014|0.206 |4.339
4%{0.040 0.143 0.359 0.350 0.081 0.007 0.001 0.019 |3.257
6%|0.060 0.269 0.540 0.107 0.002 0.002 |2.696
8%|0.080 0.445 0.463 0.012 2.407
10%/0.100 0.583 0.316 0.001 2218
20%{0.200 0.790 0.010 1.810
30%(0.300 0.700 1.700
40%{0.400 0.600 1.600
50%10.500 0.500 1.500
60%{0.600 0.400 1.400
70%{0.700 0.300 1.300
80%|0.800 0.200 1.200
30%10.900 0.100 1.100

100% 11.000 1.000

N=200| 1 hop 2 hops 3 hops 4 hops S hops 6 hops 7 hops 8 hops 9 hops 10 hops|no path| mean*
2%]10.020 0.076 0.237 0.410 0.208 0.028 0.002 0019 | 3.746
4%10.040 0.266 0.614 0.079 2732
6% 0.060 0.491 0.448 0.001 2.390
8%|0.080 0.676 0.244 2.164
10%/0.100 0.789 0.111 2011
20%} 0.200 0.800 1.800
30%| 0.300 0.700 1.700
40%{ 0.400 0.600 1.600
50%}0.500 0.500 1.500
60%{ 0.600 0.400 1.400
70%|0.700 0.300 1.300
80%|0.800 0.200 1.200
90%{0.900 0.100 1.100

100% | 1.000 1.000

*Mean is average path length of existing paths



Average path length

Table 2-3. Estimation Error

26

Error Connection Fraction (X)
% 2% 4% 6% 8 % 10% 20%
100| 34% 1.4% 1.9% 1.2% 1% 0.2%
N
2001 1% 1.4%2 0.6% 0.6% 0.6% O
4.0 7
354 \\
] 200
3.0 X
\ -+ exact
2.5 4 \ == estimation .|
. ] \\
] 100 v
N~
j —
15
o) NN S SN SE— S S —
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Connectivity Fraction (x)

Figure 2-4. Comparison between exact solution
and estimation.
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assume integer values. A hexboard consists of all cells
H(B3,3) such that B8] < K, |3l < K for some integer K (see
figure 2-4). One player, called White, tries to acquire
enough cells to have a connected path from 3 = -K to 8 = K.
His opponent, Black, needs a connected path from 2 = -K to
d = K. Black and White select cells in turn, until a winner
is determined. No draw is possible in hex; indeed every
assignment of cells to White and Black finds exactly one of

the players with a winning path.

Imagine a hexboard drawn on the plane of the random
plane network. Give White the cell H(83,3) if and only if it
contains a node of the network. The probability that Black

receives a particular cell is

SLERE (2.3.2)

Suppose Ab2 is chosen so as to make P = 0.5, i.e.

e-xbzﬁ/z

05 = (2.3.3)
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=3)

Figure 2-5. Hexboard (K

(from [6])
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SO

AbE= (210g.2)/ VT (2.3.4)

Then the game is symmetrical and Black and White each
have probability 1/2 of winning; there is probability 1/2 of
a connected path of hexagons from B = -K to 3 = K. If in

addition one picks

b=R+3/13 (2.3.5)

then points in neighboring hexagons are within distance R.
A path which provides a component of the random network

containing at least 2K+1 points. From [6] we get

2
AR(3/13) = (2 109e2)/WF (2.3.6)

multiply both side by m, and from D = mARZ, then

D(3/13) = (2110g, )43 (2.3.7)
26110Q,2
S0 D=——— =109 (2.3.8)
33

Let K be an integer arbitrarily large, and let Hg be a

hexboard of (2k+1)2 cells with separation b=R+3/13
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between cell centers. There is P probability at least 1/2
that a component of the random network joins a pair of
opposite sides of the hexboard and contains at least 2k+1

points.

Since K can be arbitrarily large, the result shows that
arbitrarily large components are easy to find when D¢ 2
10.9. This means that a random Euclidean graph with equal
transmission radii will almost certainly be fully connected

if the average degree is greater than 10.9.

In this chapter, we have analyzed the finite Bernoulli
random graph model, and developed an approximation
technique to estimate the path length distribution quickly
and efficliently. We have also presented previous
theoretical results for the infinite Euclidean model. In the
next chapter we will use a simulation technique to produce
some numerical results to analyze the finite Euclidean
model, and develop an approximation method for the path

length distribution of a finite Euclidean graph.
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Chapter 3

Simulation and Results

3.1 Einite Euclidean Simulating Model:

From previous analysis we see that to find the
connectivity of finite Euclidean graphs is much more
complex because of the "edge effect”. In this chapter, we
use a computer simulation hosted on a VAXstation 3100
computer to model finite Euclidean graphs. First we create
a set of random node locations, which satisfy the two

dimensional Poisson distribution.

From previous analysis, we know that by choosing the
transmission radius, we can control average degree. In the
simulation we wish to find the average path length under a
specified average degree, so we need to determine the
radius which will result in a specified average degree for

each random set of locations.

In our program we initialize R using equation (2.1.3).
wWe then find the adjacency matrix and compute the exact
average degree of the random network, given the selected
value of R. If the average degree is bigger than the
expected value, then we decrease the radius by half of R. If

the average degree is smaller than expected value, we
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increase the radius by half of R. We iterate in this fashion
until we achieve the desired value of average degree to

within a specified threshold.

Once we have the correct radius, we next find the
adjacency matrix. We then use a shortest path routing
algorithm to find the minimum path 1length. In our
simulation we choose Dijkstra's Algorithm [12]. This
algorithm is illustrated Fig. 3-1 and Table 3-1 for a small
network of 7 nodes.. The objective is to find the least cost
(i.e. minimum hop) path from node 1, as the source, to all
other nodes in the network. The algorithm does this in a
step-by-step process, building a shortest-path tree, rooted
in the source node (node 1 in this example), until the most
distant node in the network has been included. By kth step
the shortest paths to the k nodes closest to the source
have been calculated. These are defined to be within a set
V.

Let D(v) be the number of hops from source 1 to nodes
v. Let L(i,j) be the hops between node i and node j. There
are then two parts to the algorithm: an initialization step,

and a step to be repeated until the algorithm terminates.



Figure 3-1. An Example Network
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Table 3-1. The Shortest Path Tree From Node 1

steps D(2) D(3) D(4) D) DB D7)

Initialize ! oo oo oo oo oo
1 2 2 o0 oo oo
2 3 oo oo
3 4 o0




35

The algorithm is stated below:

I. Initialization. Set V=(1}. For each node v not in V,
set D(v)=L(1,v). (We use « for nodes not connected to 1; any
number larger than the maximum cost or radius distance in

the network would suffice.)

2. At each subseguent step. Find a node w not in V for
which D(w) is a minimum, and add w to V. Then update D(v)

for all nodes remaining that are not in V by computing
D(v) « Min[D(v), D(w)+L(w,v)]

Step 2 is repea.ted until all nodes are in V.

Using this algorithm we can find the minimum path
lengths for all nodes and then compute the average path
length. The dynamic procedure is illustrated in figure 3-2

and the program source code is included in Appendix A.

3.2 Analysis of Numerical Results:

Using the previously stated algorithms, we simulate
the construction of finite Euclidean graphs. We generatelO
independent networks for each value of 100, 200, 300,400
and 500 nodes. From the data we plot the average path
length versus average degree in Fig,3-3, 3-4, 3-5, 3-6 and
3-7.



Get Random
Number X, Y

Y

Input Desired
Average Degree

i

Generate Random
Graph

v

Adjust
Radius

Find Adjacency
Matrix

)

v

Find Actual
Average Degree

Y

|
N %esnk
Degree

Corry
'Y

Y

Find Minimum
Hop Paths

Y

Calculate Mean
Path Length

Figure 3-2. Dynamic Procedure For

Simulating Finite Euclidean Model.
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3.2.1 Lower-bound on Average Degree:

From the above figures, we can see that when the
average degree is small the sparse topology network will
yield widely varying average path lengths. When the
average degree is increased, the average path length of
different networks result in smaller variance. This
indicates that there is a certain value of average degree
D¢, below which the network will likely be disconnected

and the average path length will be difficult to predict.

To find D., we use the standard deviation of the average
path length to measure the spread of the average path
length for different random networks. This is plotted in
Figure 3-8. From Fig. 3-8 we find that when the average
degree D>10, the standard deviation is very small, since 10
individual networks have nearly the same value of the
average path length. We choose to use the approximation
Dc=10. When number of nodes increases, D¢ will increase
slightly. This result agrees closely with the result of
Gilbert's's hex method discused in chapter 2. Thus, when
the average degree of a Euclidean network is less than 10,
the network has a significant probability of being

disconnected, and also exhibits a dramatic increase in the
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variance of path length. This represents a fundamental
limitation on subsequent results in this paper. If the
average degree of the network is below 10, then the

approximation technique presented here is invalid.

3.2.2 Approximation Model for Average Path Length

After finding the lower limit on average degree , we
now try to find an approximate relationship between the
average path length, the number of nodes, and the
connectivity fraction. We compute the mean path length for
10 random networks and plot this in figure 3-9. From the
figure we find that when the connectivity fraction is
bigger than 0.5, the relation with path length is h = 2 - X,
This is equivalent to the Bernoulli model, since x of the
paths are one hop, and remaining paths will be 2 hops with

very high probability.

Next we must find an empirical relationship for

networks with connectivity fraction below 0.5.
From the plotted curves, we can see they are roughly
of hyperbolic shape in the region of interest, i.e.
y=cxb, b<O. (3.2.1)

We next use a least squares curve fit approach to find a

hyperbolic curve which fits the simulation data.



Average path length

45

17.5 1
15.0 7
1l N=500
12,54
]
10.0 4
{1l n =300

7.5
: \\ N = 100
5.0

N

2.5

0.0 +rvrrrrrrrri{rrrrirr

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Connectivity Fraction
Figure 3-9. Simulation Results for Mean

Path Length of 10 Independent Networks.

™rTrTr ™rer-r ™—rrr

0.9



46

For the hyperbolic equation y = ¢ x b ( b<0), we take

logarithms of both sides

Log (y) = log c + b log (x), (3.2.2)

which is a linear equation in log x and log v.

Let Z; = Log(xy), ¥;= logly;), A = log(c). We wish to
find a line that is, of the type ¥; = A + BZ; - that will give
values ¥; that are as close as possible to the data values
Yi Suppose that trial values A and B have been chosen and
the corresponding estimates ¥,, ¥,, .., ¥n of the values ¥,
Yo, ..., Yo have been computed. To decide whether the values
A and B are good choices, we determine the distance
between the @'s and the y's. The differences Y; - @i are

squared and summed, giving the criterion
" A 2
D (Y-,
i=t

Since ¥; = A + Bx;, this is

n 2
[yi - (A + BZ, )]

1

l

The quantity y; = ( A + Bx;) 1s the vertical distance
from the line y=A+Bx to the point (Z;, ¥;). The criterion is

kS
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the sum of the squares of these vertical distances. The
least-squares estimates, which will be denotes by a and b,

are the values of A and B that minimize the criterion. these

values are
_ Sy
= (3.2.3)
SX2X
a=Y - bZ (3.2.4)
where
’Z —
DHL=TNY, - §)
Sy =1 (3.2.5)
-1
n 2
(Z,-T)
Six” z‘z ' (3.2.6)
n-1

Syy 1s the covariance between Z and y and S,2 is the
variance of X. The statistics a and b are the least-squares

estimates.

Applying this method to the simualtion data, we find
that ¢ is approximately equal to 0.99. For b we plot the
results in figure 3-10 and we find the relationship

between b and N to be
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Chapter 4

Summary and Conclusion

In this paper we have examined the structure of finite
random graphs using both the Euclidean and the Bernoulli
models, which are the limiting cases for the topology of
real mobile radio networks. We have developed
approximation methods which accurately predict the path
length distribution and / or the average path length of
arbitrary random networks. This path length distribution
can then be subsequently used in conjunction with other
information (i.e. the channel access protocol, message
length distribution, routing algorithm and traffic
distribution) to predict the overall throughput and delay of

the network.

For the Bernoulli model, an approximation technique
with computational complexity N was derived, which is
very close to the exact solution (with computational
complexity N3). For the Euclidean model, an analytical
solution is difficult due to the boundary effects of a finite
Euclidean graph. Instead, a least square curve fit is used in
conjunction with Monte Carlo simulation data to develop a
piecewise continuous approximation of the average path

length. For low connectivity fractions, the approximation
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has a hyperbolic shape, while at high connectivities
(X>0.5), the average path length approaches the value 2-X,
where X 1is the connectivity fraction. Thus for highly
connected networks, the Bernoulli and Euclidean models

converge.

In analyzing the performance of real networks, these
approximations will provide upper and lower bounds on the
average path length and consequently on the achievable
throughput of the network. Greater prediction accuracy
could be achieved by a combination of these two models
into a single network model, which incorporates both. This,
however, would require much experimental data to
determine the precise effects of terrain, foliage, etc., and
would likely result in a model which is highly dependent
upon the particular terrain and chosen node locations, thus

losing much of its generality.
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Appendix A

Simulation Program

C H H H I I I I I I HE I I I I I I I I I I I I I I I I I I HHHX

c * Simulating finite Euclidean model *
cC * program *

C I I I H I I I I I H I I I I I I I I I I I I I I I I I I I XXX XX

C *¥* Dimension

C
real x(1000), y(1000), av_deg(20), radius(20),
mean_path(20)
real ran, degr, radiu, xx, yy, rr, de, expect_value,
total_hop
integer  z(1000,1000), d(1000,1000), deg(1000),
c(20,50),st
integer hop(30), i, j, num!, num, seed, net_num
integer degr_star, degr—end, degr_step
character*16 datafile_name
C
C

write(6,%) ' input the numbers of nodes’
read (6, *) st

write(6,*) ' input start, end and step average
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degree =’
read (6, *) degr_star, degr—end, degr_step
write(6,%) ' input creating networks number =’
read (6,%) net_num
write(6,*) ' input the data file name: *
read (6,5) datafile_name
5 format (a16)
C
c **% to generate the random position of the random graphs
x*
C
open ( unit=82, file = datafile_name, status =
‘new’)
do 250 degr = degr_star, degr_end, degr_step
do 200 se = 1, net_num
seed = -100%se
doi=1,st
x(i) = ran(seed)
end do
doi=1,st
y(i) = ran(seed)
end do
radiu = sqrt(degr/(3.14%st))
19 num = 0
do 301i=1,st
do 20j =1, st
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if (i .eq. j) then

z(i,j) =1

goto 20
end if

XX = abs(x(i) - x(j))
yy = abs(y(i) - y(j))

rr = sari(xx*xx + yy*yy)
I find the distance between nodes
if (rr .le. radiu) then
| find the adjancent matrix
z(i,j) = 1
else
z(i,j) =0
num = num + |
end if
20 continue
30 continue
C

c ** find the average degree X

c
do 451 =1, st

deg(i) = 0O

do 40 j =1, st
if (i .eq. j) then
goto 40

end if



deg(i) = z(i,j) +deg(i)

I'find degree in i column

40 continue
435 continue
de =0
do 47 i =1, st
de = deg(i) + de
I find the total degree
47 continue
de = de / st

I'find the average degree
write (6, *¥) ' the average degree =, de
if (de .gt. (degr + 0.01%degr)) then

radiu = radiu / 2
goto 19
end if

if (de .1t. (degr - 0.01%*degr)) then
radiu = radiu + radiu / 2

goto 19
end if
av_deg(se) = de
I'find the average degree
radius(se) = radiu

| find the radius
C

C ** find the minimum hops %%



S0
60

70

90
100

60

do 60 i =1, st

do 50 j =1, st
d(i,j) = z(i,j)
continue
continue

num1 = num
do 1001 =1, st
do 90 j =1, st
if (d(i,j) .eq. 0) then
call xmin(i,j,st,d,num1)
end if
continue
continue
if (num .eq. num1) then
num = 0
else
num = num |
end if
if (num .gt. 0) then
goto 70
end if
do 106 i =1, st
do 105 j =1, i
if (1.eq.j) then
d(j,i)=0



else if (d(j,i) .eq. 0) then

d(j,i) = -1
end if
d(i,j) = d(j,i)
105 continue

106 continue
. A
c ** find the means path links **
C
do 120 i =1, st
do 110 j =i, st
dok =1, 29
if ( d(i,j) .eq. k) then
hop(k) = hop(k) + 1
goto 110

end if

if (d(i,j) .gt. 29 .or. d(i,j) .eq. -1)

hop(30) = hop(30) + 1
goto 110
énd if
end do
110 continue
120 continue
do i=1,30
c(se, i) = 2*hop(i)

end do

61
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expect_value = 0
total_hops = 0O
hop(30) = 0
doi=1,29

expect_value =i * hop(i)

total_hops = hop(i) + total_hops

hop(i) = 0O
end do

mean_path(se) = total_hops / expect_value

200 continue

C
c ** save and print out the result

o
do 300 k = 1, net_num

write(82, 290) st, av_deg(k), radius(k),

mean_path(k),(c(k,i),j=1,30)
290 format(3x, i4, 1x, 7.3, 1x, f6.4, 1x, 6.3, /, 3(2x,
10(i6, 1x),/),/7,/7)
300 continue
do 400 k = 1, net_num

write(82, 290) st, av_deg(k), radius(k),
mean_path(k),(c(k,i),j=1,30)

400 continue

500 continue

999 end



c ** yniform random number generate %

C

real function ran(idum)
real r(97)

63

parameter (m1=259200, ial=7141, ic1=54773,

rmi=1./m1)

parameter (m2=134456, ia2=8121, ic2=28411,

rm2=1./m2)

parameter (m3=243000, ia3=4561, ic3=51349)

data iff /0/
if (idum .1t. O .or. iff .eq. O) then
iff =1
ix1= mod(ic1- idum, m1l)
ix1= mod(ial*ix1 + icl, ml)
ix2= mod(ix1, m2)
ix1= mod(ial*ix1+ icl,m1)
ix3= mod(ix1, m3)
do 11 j=1,97
ix1=mod(iatl*ix1 + icl, m1)

ix2=mod(ia2*ix2 + ic2, m2)

r(j) = (float(ix1) + float(ix2)*rm2)*rm1

continue
idum = 1
ix1 = mod(ial*ix1 +icl, m1)
ix2 = mod(ia2*ix2 + ic2, m2)
ix3 = mod(ia3*ix3 + ic3, m3)



c

j= 1 +(97%ix3)/m3
if (j .gt. 97 .or. j .1t. 1) pause
ran = r(j)
r(i) = (float(ix1) + float(ix2)*rm2) * rm1
return

end

C ** mini hops subroutine

c

subroutine xmin(i,j,st,d,num1)
integer d(1000,1000)
do 10 v =1, st
if (d(i,v) .ne. 0) then
if (d(v,j) .ne. 0) then
if (d(i,j) .eq. 0) then
d(i,j) = d@i,v) +d(v,j)
num1 = num1 - |
else
d(i,j) = min0(d(i,j), (d(i,v) + d(v,j)))
end if
end if
end if
10 continue
return

end

64





