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Chapter 1
Introduct ion

Packet radio networks (PRnet) provide data

communications by packet switching technology to mobile

users where direct radio or wire connection between the

source and destination users is not available. Like any

packet communication system, to analyze a packet radio

network, we first need to determine a model which can

represent the network topology. For the N-node radio

network, there are 2N( N- l ) / 2 range of possible topologies.

Moreover, when PRnet's are mobile, the topologies change

dynamically so that it is impossible to analyze the network

performance over all possible topologies. Clearly, no single

model can be formulated which incorporates all the

necessary parameters and leads to an optimum solution.

Therefore we must develop some representations of

network topologles which allow us to describe

mathematically a wide range of realistic network

topologies and use those to analyze the network operations.

Kleinrock and Silvester [8] identify the following

three prevalent assumptions used in modeling the

topological structure of PRnets: (1) regular structure, in

which nodes are considered to be located in some regular
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pattern on the plane; (2) a continuum of nodes, in which

nodes are considered to be continuously present throughout

the plane and network traffic is generated at some rate per

unit area; and (3) random locations, which nodes are

considered to be randomly distributed in the space of

interest. In this thesis we will focus on the random

location topology and attempt to develop a useful

approximation of the topological structure of realistic

packet radio networks.

There are two possible random location models which

can be used [3]. The Euclidean model assumes that the

transmission radius of nodes is fixed in conjunction with

an assumed Poisson distribution of locations, and therefore

the link existence is strictly a function of internode

distance. Thus, each node has a fixed transmission radius

and the resulting connectivity matrix describes a Euclidean

random graph as shown in figure 1-1. In the Euclidean

model, an implicit assumption is made that the

transmission range of a node is dominated by the free

space propagation of the radio signal, and the transmission

range Is equal in all directions as represented in the "range

circles" of figure 1-1.

Another possible model is the Bernoulli random graph

model proposed by Dill [3]. This model assumes the

existence of each link is the result of a Bernoulli random
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trial with probability P, which is independent of all other

links in the network. Thus, nodal positions are ignored, and

the adjacency matrix is determined by a series of

independent Bernoulli trials.

Th Bernoulli and Euclidean models represent the

extremes of possible topologies for real radio networks

[3]. For example, if the terrain is flat with minimal foliage

or man-made structures, or if the radio nodes are carefully

sited with their antennas placed on hilltops, then the

Euclidean model is an excellent approximation. If, however,

the terrain is rough and heavily foliated, or if the network

is operat i ng in an urban or suburban envi ronm ent, then the

Bernoulli model is preferable. The topology of real

networks is best described by a combination of these two

models.

In this thesis, we attempt to find some useful

approximations to describe the topologies of finite random

graphs for both the Euclidean and the Bernoulli models. We

are particularly interested in the path length

distributions, assuming a" minimum hop routing algorithm

is avat l ab l e.t Many such algorithms ex ts t , e.g. Dijkstra's

algorithm, the Bellman-Ford algorithm, etc. [12] ).

The structure of infinite random Euclidean graphs has

been studied extensively ( [4], [6] ) and results have been
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found for the probability of connectedness for very large

graph components. However, little theoretical work has

been done on finite Euclidean graphs. The difficulty in

analyzing the structure of finite Euclidean graphs results

from the boundary effects at the edges of the fi ni te plane.

Rather than attempting to solve the more general

analytical problem, in this thesis we develop an

approximation technique which is based on a combination

of analytical and simulation results, and enables us to

predict the average minimum hop path length of a finite

Euclidean random graph Quite accurately.

For finite Bernoulli random graphs, on the other hand,

there are no complicating edge effects, and an exact

solution for the path length distribution has been found by

Dill [3]. The algorithm, however, has a computation time

which is proportional to N3, and is computationally

infeasible for large networks. In this thesis we develop an

approximation to the exact solution which is quite

accurate for large networks, and is computationally

proport lana 1 to N.

Infinite Euclidean Graphs:

To construct a sample instance of an infinite Euclidean

network, we first pick nodes from the infinite plane by a

Poisson process with density A points per unit area. Next
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we connect each pair of nodes by a line if the pair is

separated by distance less than R, i.e., if the pair can hear

each other. Figure 1-2 shows two networks obtained from

the same random node pattern but with different values of

R. The parameter D in figure 1-2 represents the average

number of neighbors posessed by each node ( also called the

average degree); D=nR 2 A.,. Not all lines of the networkare

drawn, just enough to show the connected components

(called subne t s). Naturally, subnets for larger D (D L ) are

bigger than those for smaller D (Ds) but there ts a

qua11tatlve d1fference as well. The small subnets of the Ds

network are so merged together 1n the DL network that

most of the nodes belong to a single large subnet. This

phenomenon suggests that there is an expected 0 in which

the subnet will merge to a single connected network with

infinitely many nodes in the infinite plane [6]. So the limit

Lim P(n)=P(oo)
n~oo

( 1. 1)

need not be zero. It represents the probability of belonging

to an inr tn tt e connected network. In [6] it ts shown that

P(oo) = 0 when D < 1.75 and P(oo) > 0 when D is sufficiently

large. Thus there exists a cr1t1cal value Dc which is the

largest value of D for wh1ch P(oo) = O.
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Erdos and Renyl [4] have considered the issue of

connectivity for large random graphs and found that if the

average degree is log<N)+c then the probability of the graph
-c

being connected is e-e . Dewitt [2] has found a lower

bound on the probability of connectedness if the average
-c

degree is 41 ogCN)+41oglogCN)+4c then Pr(connected) ~ e-e .

However, the graphs that we are primarily concerned

with in this research are finite Euclidean graphs where the

existence of edges is significant, and is not an independent

process. Thus these results are asymptotically true for

large graphs, but may differ significantly for finite graphs.

In the fin1te Euclidean plane with a finite number of

nodes, the analysis of connectivity is much more complex

because of the edge effects. First, the nodes near the edges

of the plane tend to have fewer neighbors because the1r

range c1rcle extends beyond the edge of the r tntt e plane,

where no potent1al ne1ghbors exist as shown on F1g 1-3.

Second, the edge effects will 1ncrease as when' the number

of nodes increases. The questions are: does a criteria still

exist for a mtntrnurn value of average degree Dc desp1te the

edge effects, and is there some relationship between the

total number of nodes and average path length? Practically,

when we design a network, we would like to know the

minimum average degree that the network should have, t.e.
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the desired transmission radius, and thus the average path

length of the network.

In this thesis we focus on finite plane networks. We

introduce Gilbert's hex method to analyze the finite

Euclidean model and simplify Dill's result for the Bernoulli

model. Because analyzing the finite Euclidean model is

analytically difficult, we will use experimental simulation

data to obtain statistical results.

The following is the outline of this thesis. In chapter

2 we analyze the Bernoulli model and the Euclidean model.

In chapter 3 we use a computer simulation to find

statistical properties of the finite Euclidean model.

Finally the conclusions of this research are presented in

chapter 4.
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Chapter 2

Analysis of Bernoulli and Euclidean Models

2.1 OverY i ew of Random Graph Mode 1s:

A simple undirected graph G=(V,E), without multiple

edges and self-loops, is defined by a finite node (vertices)

set V and a finite unordered node pair set E. An element of

E is called an "edge" and is represented by (u.v) (u, v E V,

u- v). From the definition, it holds that (u, v) = tv , u). For

an edge e = (u, v) ~ E, u and v are end points of the edge e.

The degree of a node v( ~ V) is the number of edges

adjacent to v, and so the average degree of the graph or

network G is defined as the average number of neighbors

which each node possesses.

2.1.1 Euclidean Random Graphs:

In a Euclidean random graph model of a radio network,

each node represents a station which is capable of

transmitting and receiving messages and each edge (line)

represents a bidirectional channel. Each node is assumed to

use a predetermined fixed radius for transmission so that

the network structure (topology) is completely specified.

In this thesis, we assume all statlons have the same radius

so that the performance of the network will then be
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studied as the transmission radius is varied as shown in

figure 2-1. Any nodes falling within a circle of radius R

about a node will be able to hear that node and also will be

able to transmit to it. Clearly by increasing the

transmission radius, we can increase the average degree,

each node being able to communicate with more nodes. In

the limit, if the transmission radius spans the entire

network, then the graph becomes fully connected.

As the nodes are randomly distributed in a two

dimensional plane, the average number of nodes that will

be in a circle of radius R is assumed, most commonly, to be

described by a two dimensional Poisson distribution, and

the probability of finding k nodes in a region of area A is

p = (AA)i . e-AA
. I1 .

(2. 1. 1)

Since A = TTR2 is the area covered by the transmission, we

can define 0 to be the average degree of the network (It is

also an 1ndicat1on of network conne ct tvttv).

D = "AA = "A TT R2 (2.1.2)

In the unit square plane, we can assume A equal to N nodes

to estimate the average degree, t.e.



..-.------41---- Iso1eted Node

Figure 2-1 Simple Euclidean Network.
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(2.1.3)

The topology of the graph can be represented by a

binary connectivity matrix of the form:

1 if j and adjacent in G;

A=( alj ) al j ={
o otherwise.

(2.1.4)

From this adjacency matrix, we can generate the set of

minimum hop paths for the network by using any standard

rout1ng algor1thm.

We next 1ntroduce the der tntt ton of the connectivity

fraction and average path length. The connect1v1ty rract ton

of the random network, X, is defined as the fraction of

potent1al l1nks wh1ch actually extst The parameters, N, D,

X are related by the equat10n

D=X(N-l) (2.1.5)

ThUS, aconnect1v1ty fraction of X= 1 corresponds to a fully

connected network, and for the random network, the X is

characterized stat1st1cally by the two parameters Nand D.
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The average path length is the expected number of

hops required to reach an arbitrary destination using a

minimum hop routing algorithm.

2.2 Bernoulli Model Analysis:

As stated in Chapter 1, nodal positions in the

Bernoulli model are ignored, and the existence ( or

nonexistence) of any link is therefore not a function of

internode distance. Thus, with a Bernoulli random trial

probability P, the adjacency matrix is determined by a

series of independent Bernoulli trials.

In order to solve the distribution of (minimum hop)

path lengths in a Bernoulli random network, we begin by

choosing a random node, v , and finding the distribution of

path lengths from v to all other nodes. Then, since the

1inks in the Bernoulli random graph are independent, it

follows that this is the path length distribution for all

paths in the entire graph.

In [3] an exact recurrence relation solution to the

finite Bernoulli random graph has been found. It proceeds in

successive levels, as shown graphically in figure 2-2 for

an exam p1e network of 7 nodes, where the state var: ab1es

are defined as:
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(a) = the current level, or distance in hops from node

v.

(b) k1 = the number of nodes which are exactly hops

(minimum) from node v.

(c) 11 = the number of nodes "left over" or greater than

hops from node v.

The initial state (i=O) of the recurrence relation is

(0,1 IN-1)J t.e., since node v is 0 hops from itself, and all

other nodes are left over.

nodes at this level and 11-1 nodes remaining, which is

simply a binomial term given by

1 k· 1. - k.
~ [k = k I k = k and 1 = 1 ] = ( i - 1) P 1 ( 1- P. ) 1- 1 1
r i i i-1 i-1 1-1 ;-1 k , i-1 1-1

1

(2.2.1 A)

where

(2.2.1 B)

(2.2.1 C)

A terminal node 1s reached whenever 11 = 0 (no more

nodes left, so all minimum hop paths have been found), or

k1 = 0 (no nodes at this level, so the rest are disconnected).
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The state probabilities are then computed by summing

over all previous states as

Pr [ k; = k; and 1i =1; ]

J ] 1
= 2: Pr [ k i =j and 1; _1=1i _1 ( ~.- 1 ) Pi~~ ( 1-Pi-l )1

i
-

1
- ki (2. 2. 2 )

i = 1 1

where

and

J = N - i - 11-1 + 1

P1 = 1 - ( 1 - X)kj

(2.2.3)

(2.2.4)

It was found that the transition probability that there are

ki nodes at the next level, given that there are ki-l

So the expected number of nodes at any level, 1, is

computed as

N N
E{k; }=2: j 2: Pr [ k;=jand 1;=m ]

j = 1 m=1

And finally, the path length distribution is found as

E{Ki}
hi =Pr { path is exactly i hops} = N _ 1

(2.2.5)

(2.2.6)



State vector = (i,k,j) where:

1= number of hops from source

k =number of nodes at level j

j = number of nodes len (>level i)

Figure 2-2. Example recurrence relation for
determination of path length distribution for
a 7 node network. (from [3])
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From the (2.2.2) and (2.2.5) we see that the exact

computation of path length distribution of nodes is of

order N3 and very computationally intensive for large N,

since k1 and ki-1 are not independent random variables.

Therefore, we wish to find some way to make an

approximation for this distribution which is

computationally efficient.

To do this, we first recall the initial values ko = 1,10

= N-1, Po = X, then compute the expected value of k 1.

(2.2.7A)

Let k1 be the expected value of ki. Then

Continuing,

'r
P = l-(l-X) 1

1

(2.2.7B)

(2.2.7C)



- 11 -1 1- k
k2 = L k 2 ( 1) j2 (1- P ) 1 2

k = 0 k 1 1
2 2

So on, in general,

- 1;-1 -1 k i _ T -k.
k .=~ k. ( i - 1)P (1 - P. ) 1- 1 1

1 ~ 1 k . '-1 1-1
k > 0 1 1

1

1. = 1 - k .
1 i -1 1

k·p.= l-(l-X) 1
1

For equation (2.2.9A)J we make use of the formula

20

(2.2.8A)

(2.2.8B)

(2.2.8C)

(2.2.9A)

(2.2.9B)

(2.2.9C)

a = ( ~ ) p l (l_p)l-J = lP (2.2.10)

wh1ch is s1mply the mean value of a binomial dtstr tbut ton.

The set of recurrence relation equations can then be

written as



k . = 1 P
1 i -1 i-1

1 = 1 - k
i i -1 i

k·P.= l-(l-X) 1
1

Finally, the average path length is given by

21

(2.2.1 1A)

(2.2.1 1B)

(2.2.11C)

(2.2.12)

From the (2.2.11) equations, with initial condition ko = 1J

10 = N-l, Po = X, successive expected values of k1 can be

quickly computed recursively since each new value depends

only on its immediate predecessor. The problem is that in

general, k1 and 11 are not integers, and thus the summation

and combinations are inexact.

In [3] the exact results for networks of 25, 50, 100

and 200 nodes are presented (see Table 2-1 and (Figure 2­

3). Table 2-2 presents the results using the approximation

method given here for 100 and 200 nodes. Comparing the

two methods, the errors are less than 2~ (see Table 2-3

and F1 gure 2-4).

From the figure 2-3, we find that as the average degree D

increases, the average path length approaches a
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Variation of Average Path Length

4.0 -.--~--.p--...--....----....----..--..-------..---

s:
~ 3.5 ........--+--.--..--+-----~-~---+---~--..+--~--.-..I
c
(1)

5 3.a ...........Hw-~...--~'""'"""""',."".",..,.,~....-.......... ................-.,.."""..........frn...........",.____+-----~~ ...........................................~................"""....

ro
a.
0­
~ 2.5 ...........~~~--+---i---~-~.......-_.....+----..<~~""O'_~__4_0--~
I
C

(l)
0')

ro
L
(l)
> 1.5 ............................~...............~...............~~ ...............~~........~~ ...............~...............~~ ...............~......................
-c

1.0 ,....-+ ,............-+ ~~~ ~ ~

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

connectivity Fraction (x)

Figure 2- 3. Average path 1ength for Bernou 11 i

random graphs. (from [3])
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value of 2-X, since X of the paths are one hOPJ and all

remaining paths will be 2 hops with high probability.

2.3 Euclidean Model Analys1s:

There are many methods (such as branching processes,

percolation processes) by which we can analyze infinite

Euclidean graphs. Here we introduce Gilbert1s hex method

[6] to estimate Dc. It will be shown that this result is

close to our result derived expermentally via statistical

simulation in Chapter 3 for finite Euclidean graphs.

Hex is played on a honeycomb pattern of hexagonal

cells. A typical cell H(I3,o) has its center at the point with

Cartesian coordinates:

( (3) -13X = n + - b V =ob-
2 I 2

(2.3.1 )

where b is the seoarat ton between cell centers and 13 and a



Table 2-1. Exact Minimum Hop Path Lenth
Dtstrtcut ion for 100, 200 Nodes (from [3]).

N=100 1 hop 2 hops :3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops no path mean*
2~ 0.020 0.038 0.064 0.093 0.108 0.100 0.077 0.052 0.032 0.019 0.397 3.235
4~ 0.0400.139 0.3210.3180.1180.0230.003 0.038 3.303
6~ 0.060 0.280 0.503 0.145 0.008 0.004 2.747
B~ 0.080 0.430 0.463 0.027 0.001 2.436
10~ 0.100 0.564 0.333 0.003 2.239
20"- 0.200 0.785 0.015 1.615
30~ 0.3000.700 1.700

40" 0.400 0.600 1.600
50~ 0.5000.500 1.500
60"- 0.6000.400 1.400
7O'"' 0.7000.300 1.300

6O'"' 0.8000.200 1.200
9O~ 0.900 0.100 1.100

100~ 1.000 1.000

N=200 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 6 hops 9 hops 10 hops nopath mean-

2" 0.0200.075 0.221 0.357 0.222 0.057 0.009 0.001 0.038 3.784
4~ 0.0400.261 0.567 0.110 0.001 0.001 2.770

6~ 0.0600.480 0.457 0.003 2.404

8"- 0.0800.662 0.258 2.178

10~ 0.1000.777 0.123 2.023

20~ 0.2000.800 1.800

30~ 0.3000.700 1.700

40~ 0.4000.600 1.600

50~ 0.5000.500 1.500

60~ 0.6000.400 1.400
701 0.7000.300 1.300

60~ 0.6000.200 1.200

90~ 0.9000.100 1.100

100~ 1.000 1.000

*Meanis average path1engthofexisti ng pattis

24



Table 2-2. Estimation of Minimum Hop Path
Lenth Distribution for 100, 200 Nodes.

2)

N=100 1 hOD 2 hODS 3 hODS 4 hODS 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops nopath mean*
2~ 0.020 0.038 0.007 0.113 0.154 0.160 0.122 0.070 0.033 0.014 0.206 4.339
4~ 0.040 0.143 0.359 0.350 0.081 0.007 0.001 0.019 3.257
6~ 0.060 0.269 0.540 0.107 0.002 0.002 2.696
8~ 0.080 0.445 0.463 0.012 2.407
10~ 0.100 0.583 0.316 0.001 2.218
20~ 0.200 0.790 0.010 1.810

30~ 0.300 0.700 1.700

40"- 0.400 0.600 1.600
50~ 0.500 0.500 1.500

60" 0.600 0.400 1.400

70~ 0.700 0.300 1.300

80" 0.800 0.200 1.200
90~ 0.900 0.100 1.100

100~ 1.000 1.000

N=200 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 1a hODS no path mean*
2~ 0.020 0.076 0.237 0.410 0.208 0.028 0.002 0.019 3.746
4~ 0.040 0.266 0.614 0.079 2.732
6~ 0.060 0.491 0.448 0.001 2.390

8" 0.080 0.676 0.244 2.164

10" O. 100 0.789 0 .111 2.011
20~ 0.200 0.800 1.800
30~ 0.300 0.700 1.700
40~ 0.400 0.600 1.600
50~ 0.500 0.500 1.500
60~ 0.600 0.400 1.400
70~ 0.700 0.300 1.300

BOX 0.800 0.200 1.200
90~ 0.900 0.100 1.100

100~ 1.000 1.000

*He8n is average path length ofexisti ng paths
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Table 2-3. Estimation Error

Error Connection Fraction (X)
% 2% 4% 6% 8% 10% 20%

100 34% 1.4% 1.9% 1.2% 1% 0.2%
N

200 1% 1.4% 0.6% 0.6% 0.6% a

\
\

· 200..

\ - ---- exact, 2- -- estimation~

"~Ol~<,
"-------~

---
··

-.1.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Connect1v1ty Fract10n (x)

Fi gure 2-4. Cornparison between exact so lut ion
and estimation.
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s: 3.5
4-J
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assume integer values. A hexboard consists of all cells

H(13,o) such that 1I31 ~ K, lal ~ K for some integer K (see

figure 2-4). One player, called White, tries to acquire

enough ce 11 s to have a connected path from I3 = -K to 13 = K.

His opponent, Black, needs a connected path from a = -K to

o = K. Black and White select cells in turn, until a winner

is determined. No draw is possible in hex; indeed every

assignment of cells to White and Black finds exactly one of

the players with a winning path.

Imagine a hexboard drawn on the plane of the random

plane network. Give White the cell H(13,o) if and only if it

contains a node of the network. The probability that Black

receives a particular cell is

(2.3.2)

Suppose Ab 2 1s chosen so as to make P = 0,5, t.e.

(2.3.3)



Figure 2-5. Hexboard (K = 3)
(from [6])

28
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so

(2.3.4)

Then the game is symmetrical and Black and White each

have probability 1/2 of winning; there is probability 1/2 of

a connected path of hexagons from 13 = -K to 13 = K. If in

addition one picks

b = R-v'3713 (2.3.5)

then points in neighboring hexagons are within distance R.

A path wh1ch provides a component of the random network

containing at least 2K+ 1 points. From [6] we get

multiply both s1de by TI, and from 0 = TIAR2, then

0(3/13) = (2nloge2)1/3

26n loge 2
So: 0 = = 10.9

3/D

(2.3.6)

(2.3.7)

(2.3.8)

Let K be an integer arbitrarily large, and let Hk be a

hexboard of (2k+ 1)2 cells w1th separation b = R-v'3713
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between cell centers. There is P probability at least 1/2

that a component of the random network joins a pair of

opposite sides of the hexboard and contains at least 2k+1

points.

Since K can be arbitrarily large, the result shows that

arbitrarily large components are easy to find when Dc ~

10.9. This means that a random Euclidean graph with equal

transmission radii will almost certainly be fully connected

if the average degree 1s greater than 10.9.

In this chapter, we have analyzed the finite Bernoulli

random graph model, and developed an approximation

technique to estimate the path length distribution quickly

and efficiently. We have also presented previous

theoretical results for the infinite Euclidean model. In the

next chapter we will use a simulation technique to produce

some numerical results to analyze the finite Euclidean

model, and develop an approximation method for the path

length distribution of a finite Euclidean graph.
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Chapter 3

S1mulatlon and Results

3,1 Finite Euclidean Simulatlng Model:

From previous analysis we see that to find the

connectivity of finite Euclidean graphs is much more

complex because of the fledge effect .. , In this chapter, we

use a computer simulation hosted on a VAXstation 3100

computer to model finite Euclidean graphs, First we create

a set of random node locations, which satisfy the two

dimensional Poisson distribution.

From previous analysis, we know that by choosing the

transmission radius, we can control average degree, In the

simulation we wish to find the average path length under a

specified average degree, so we need to determine the

radius which will result in a specified average degree for

each random set of locations.

In our program we initialize R using equation (2.1.3).

We then find the adjacency matrix and compute the exact

average degree of the random network, given the selected

value of R. If the average degree is bigger than the

expected value, then we decrease the radius by half of R. If

the average degree is smaller than expected value, we
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increase the radius by half of R. We iterate in this fashion

until we achieve the desired value of average degree to

within a specified threshold.

Once we have the correct radius, we next find the

adjacency matrix. We then use a shortest path routing

algorithm to find the minimum path length. In our

simulation we choose Dijkstra's Algorithm [12]. This

algorithm is illustrated Fig. 3-1 and Table 3-1 for a small

network of 7 nodes.. The objective is to find the least cost

(t.e. minimum hop) path from node 1, as the source, to all

other nodes in the network. The algorithm does this in a

step-by-step process, building a shortest-path tree, rooted

in the source node (node 1 in this example), until the most

distant node in the network has been included. By kth step

the shortest paths to the k nodes closest to the source

have been calculated. These are defined to be within a set

V.

Let O(v) be the number of hops from source 1 to nodes

v. Let L(i,j) be the hops between node 1 and node j. There

are then two parts to the algorithm: an initialization step,

and a step to be repeated unt 11 the a1gori thm term i nates.
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Figure 3-1. An Example Network



Table 3-1. The Shortest Path Tree From Node 1

steps 0(2) D(3) D(4) 0(5) D(6) 0(7)

Initialize 1 00 00 00 00 00

1 2 2 00 00 00

2 3 00 00

3 4 00

4 00

34
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The algorithm 1S stated below:

1. Initialization. Set V=(l). For each node v not in V,

set O(v)=L( f .v). (We use 00 for nodes not connected to 1; any

number larger than the maximum cost or radius distance in

the network would sur r tce.)

2. At each subsequent step. Find a node w not in V for

which D(w) is a minimum, and add w to V. Then update D(v)

for all nodes remaining that are not in V by computing

D(v) ~ Min[D(v), D(w)+L(w,v)]

Step 2 is repeated until all nodes are in V.

Using this algorithm we can find the minimum path

lengths for all nodes and then compute the average path

length. The dynamic procedure is illustrated in figure 3-2

and the program source code is included in Appendix A.

3.2 Analysis of Numerical Results:

Using the previously stated algorithms, we simulate

the construction of finite Euclidean graphs. We generate 10

independent networks for each value of 100, 200, 300,400

and 500 nodes. From the data we plot the average path

length versus average degree in Fig J3-3, 3-4, 3-5, 3-6 and

3-7.
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3.2.1 Lower-bound on Average Degree:

From the above figures, we can see that when the

average degree is small the sparse topology network will

yield widely varying average path lengths. When the

average degree is increased, the average path length of

different networks result in smaller variance. This

indicates that there is a certain value of average degree

Dc, below which the network will likely be disconnected

and the average path length will be difficult to predict.

To find Dc, we use the standard deviation of the average

path length to measure the spread of the average path

length for different random networks. This is plotted in

Figure 3-8. From Fig. 3-8 we find that when the average

degree 0> 10, the standard deviation is very small, since 10

individual networks have nearly the same value of the

average path length. We choose to use the approximation

Dc=10. When number of nodes increases, Dc will 1ncrease

slightly. This result agrees closely with the result of

Gilbert'sls hex method discused in chapter 2. Thus, when

the average degree of a Euclidean network is less than 10,

the network has a significant probability of being

disconnected, and also exhibits a dramatic increase in the
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variance of path length. This represents a fundamental

limitation on subsequent results in this paper. If the

average degree of the network is below 10, then the

approximation technique presented here is invalid.

3.2.2 Approximation Model for Average Path Length

After finding the lower limit on average degree, we

now try to find an approximate relationship between the

average path length, the number of node-s, and the

connect i v i ty fract i on. We com pute the mean path 1ength for

10 random networks and plot this in figure 3-9. From the

figure we find that when the connectivity fraction is

bigger than 0.5, the relation with path length is f = 2 - x.

This is equivalent to the Bernoulli model, since x of the

paths are one hop, and remaining paths will be 2 hops with

very high probability.

Next we must find an empirical relationship for

networks with connectivity fraction below 0.5.

From the plotted curves, we can see they are roughly

of hyperbolic shape in the region of interest, i.e.

y = c X b, b< o. (3.2.1)

We next use a least squares curve fit approach to find a

hyperbolic curve which fits the simulation data.
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For the hyperbolic equation y = c X b ( b coi, we take

logarithms of both sides

Log (y) = log c + b log (x),

which is a linear equation tn log x and log y.

(3.2.2)

Let Xi = LOg(Xl), Yi = 109(Yl), A = log(c). We wish to
A

f1nd a line that is, of the type Yi = A + BXi - that w1l1 give
A

values Yi that are as close as poss1ble to the data values

Yi. Suppose that trial values A and B have been chosen and
A A A

the corresponding estimates Y1J Y2J ... , Yn of the values Y1J

Y2J ... , Yn have been computed. To decide whether the values

A and B are good choices, we determine the dlstance
A A

between the u:» and the y·s. The differences Yi - Yi are

squared and summed, giving the criterion

n A. 2
~ ( Y·- v. )Z: i l
i=1

A

S1nce Yi = A + BXi, this is

n 22: [Yi - (A + BXi )J
i=1

The qua n t 1t Y Y i = ( A + BX t ) 1s the v er t 1cal d1s tan c e

from the line y=A+Bx to the point (Xi, Yilt The cr1ter1on 1s

J
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the sum of the squares of these vertical distances. The

least-squares estimates, which will be denotes by a and b,

are the values of A and B that minimize the criterion. these

values are

sxy
b=­

S2
xx

(3.2.3)

a = y - bX (3.2.4)

where

n - 1
(3.2.5)

n
2: (Xi-X )(Yi - f})
i=ts =-------xy

s =
xx

n - 1

(3.2.6)

5 I y is the covariance between Z and y and 5 I
2 is the

variance of X. The statistics a and b are the least-squares

estimates.

Applying this method to the simualtion datal we find

that c is approximately equal to 0.99. For b we plot the

results in figure 3-10 and we find the relationship

between band N to be
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b = -0.608 + \., e-4 '* N

(3.2.7)

arrlve at the Euc\1dean model approxlmatl0n:

-0.608+ , . , e-4*N

_l o.gg*X

X ( 0.5

h::

(3.2.
8)

2 _ X

X 2. 0.5

In F\g. 3-", we plot the tWO approx\m
at e

modelS,

Berno
ull\

and Eucl\dean by us\ng the approx\mat\on

techn\Ques. AS noted before \t th\S represents the lower

and upper bounds on the model\ng of "real" topology.

Th\s \s another pr\mary result · It shoWS the average

length as a runct \on of connect tv \ ty fract \on x and

3l nodes N. It should be noted here th\S result \s only

ltable for netwOrKS w\th average degree greater than '0,

~cause beloW that value the networK \S l\Kely to be

j\Sconnected. G\ven N, the average path length \s a

hyperbO" c funct \on of average degree.



50

500

300

Euc11dean model

/

\
I

/ Bernoulli model

'\00;I I
J

~r

• 300 ~
~,,'- -, 100

500"~~
-~
~~ -.......
~ ..............

-.
. . .

4.0

1.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2.5

13.0

10.0

11.5

s:
+oJ 8.5
0)

c
<1>-
s:
+oJ
to
a. 7.0
<1>
(j)

to
'-
C1>
>-c

5.5

Connectivity rract ton (x)

Figure 3-11. Approx1mat1ons of Finite Euclidean
and Bernoulli Models (x ~ 0.5),



5 1

Chapter 4

Summary and Conclusion

In this paper we have examined the structure of finite

random graphs using both the Euclidean and the Bernoulli

models, which are the limiting cases for the topology of

real mobile radio networks. We have developed

approximation methods which accurately predict the path

length distribution and / or the average path length of

arbitrary random networks. This path length distribution

can then be subsequently used in conjunction with other

information ( t.e. the channel access protocol, message

length distribution, routing algorithm and traffic

distribution) to predict the overall throughput and delay of

the network.

For the Bernoulli model, an approximation technique

with computatlonal complexity N was derived, which is

very close to the exact solution (with computational

complexity N3). For the Euclidean model, an analytical

solution is difficult due to the boundary effects of a finite

Euclidean graph. Instead, a least square curve fit is used in

conjunction with Monte Carlo simulation data to develop a

piecewise continuous approximation of the average path

length. For low connectivity fractions, the approximation
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has a hyperbolic shape, while at h1gh connectivities

(X>0.5), the average pathl ength approaches the value 2-XJ

where X is the connectivity fraction. Thus for highly

connected networks, the Bernoulli and Euclidean models

converge.

In analyzing the performance of real networks, these

approximations will provide upper and lower bounds on the

average path length and consequently on the achievable

throughput of the network. Greater prediction accuracy

could be achieved by a combination of these two models

into a single network model, which incorporates both. This,

however, would require much experimental data to

determine the precise effects of terrain, foliage, et c., and

would likely result in a model which is highly dependent

upon the particular terrain and chosen node locations, thus

losing much of its generality.
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Appendlx A

Simulation Program

c ***********************************

c *
c *

Simulating finite Euclidean model

program
*
*

c ***********************************

c

c ** Dimension **

c

real x( 1000), y( 1000), av_deg(20), r adtust z o),

mean_path(20)

real ran, degr, radtu, xx, yy, rr. de, expectc.value,

to talc.nop

integer z( 1000, 1000), d( 1000, 1000), deg( 1000),

c(20,50)J s t

integer hop(30), 1, r. num 1, num, seed, net.i.nurn

integer degr_star, degr_end, degr_step

character* 16 dataf i 1e_nam e

c

c

write(6,*) · input the numbers of nodes'

read (6, *) st

write(6,*) · input start, end and step average
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degree ='

read (6, *) degr_star, degr_end, degr_step

write(6,*) I input creating networks number ='

read (6,*) net.mum

write(6,*) I input the data file name: ·

read (6,5) dataf i 1e.inarne

5 format (a 16)

c

c ** to generate the random pos i t i on of the random graphs

**
c

open ( unit=82, file = datar tte.marne, status =

'new')

do 250 degr = degr_star, degr_end, degr_step

do 200 se = 1, net.inum

seed = - 1OO*se

do 1 = 1, st

x( i) = ran( seed)

end do

do 1 = 1, st

y(i) = ranvseec)

end do

radlu = sqrt(degr/(3.14*st))

19 num = 0

do 30 i = 1J st

do 20 j = 1J st
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if (i .eq. j) then

zt t.j) = 1

gato 20

end if

xx = abstxt t) - x(j»

yy = abstyt t) - y(j»

rr = sqrt(xx*xx + yy*yy)

I find the distance between nodes

if (rr .le. r adtu) then

I find the adjancent matrix

z(i,j) =

else

z(i,j) = 0

num = num +

end if

20 cont inue

30 continue

c

c ** find the average degree **
c

do 45 i = 1J st

deg( t) = 0

do 40 j = 1, st

if (1 .eq. j) then

goto 40

end if



deg(i) = z(i,j) +deg(i)

I find degree in i column

40 cant i nue

45 cont tnue

de = 0

do 47 j = 1, st

de = deg<l) + de

I find the total degree

47 cant inue

de = de / st

I find the average degree

write (6, *) I the average degree = '. de

if (de .gt. (degr + 0.0 1*degr) then

radiu = radiu / 2

goto 19

end 1f

if (de .It. (degr - O.Ol*degr» then

radiu = radiu + radiu / 2

goto 19

end if

av..neqtse) = de

I find the average degree

radtust se) = radtu

I find the radius

c

c ** find the minimum hops **

59



c

do 60 1 = 1, st

do 50 j = 1, st

d(l,j) = zt t.j:

50 continue

60 cant lnue

num 1 = num

70 do 100 i = 1, st

do 90 j = 1, st

if (d(l,j) .eQ. 0) then

call xmtnt t.j.st.c.num 1)

end if

90 cant inue

100 cant i nue

if (nurn .eq. num 1) then

num = 0

else

num = num 1

end if

1f (num .gt. 0) then

goto 70

end if

do 106 i = 1, st

do 105 j = 1, 1

jf ( 1 .eq. j ) then

d(j,l) = 0

60



else if (d(j,i) .eq. 0) then

d(j,l) =-1

end if

d(i,j) = d(j,i)

105 cont i nue

106 cant i nue

c

c ** find the means path links **
c

do 120 i = 1, st

do 1 10 j = i J st

do k = 1, 29

if ( d(i,j) .eq. k) then

noprk) = hoptk) + 1

goto 110

end if

if (d(l,j) .gt. 29 .or. d(i,j) .eq. -1)

hop(30) = hop(30) + 1

goto 110

end if

end do

1 10 cant inue

120 cont i nue

do 1=1,30

ct se, i) = 2*hop(i)

end do

6 1
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expect.cvatue = 0

tota Lhops = 0

hop(30) = 0

do 1 = 1J 29

expect.iva1ue = i * hop( 1)

total..nops = hop( 1) + tot at..hoos

hop( 1) = 0

end do

mean.ipathtse) = to tal.Jioos / expectc.value

200 continue

c

c ** save and print out the result **
c

do 300 k = 1, net.i.num

write(82, 290) st, av_deg(k), r adlustk),

mean_path(k),(c(k,l),j= 1,30)

290 torrnatOx, 14, 1x, f7.3, 1x, f6.4, 1x, f6.3, r, 3(2x,

10(16, 1x),/),I ,I)

300 continue

do 400 k = 1, netc.nurn

wrlte(82, 290) st , av_deg(k), r adtustk).

mean_pat h(k ), ( c(k, 1), j =1,30 )

400 cont 1nue

500 cant 1nue

999 end

c
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c ** uniform random number generate **
c

rea 1 funet 1on ran{ 1dum)

real r(97)

parameter (ml=259200, ial=7141, 1c1=54773,

rm 1=1./m 1)

parameter (m2= 134456, ia2=8121 J ic2=2841 1,

rm2= 1./m2)

parameter (m3=243000, la3=4561, ic3=51349)

data iff /01

if (Idum .1t. 0 .or. iff .eq. 0) then

iff = 1

ixl= rnodt tc t- tdurn, m t )

tx l - mod(lal*lxl + tc t , m t )

txz- modux 1J m2)

ixl= mod{lal*ixl+ tc i .m i )

ix3= modux 1, m3)

do 1 1 j = 1, 97

tx t-rnodua t stx l + tc t , rn t )

ix2=mod(la2*ix2 + ic2, m2)

r(j) = (r loatt tx 1) + float(lx2)*rm2)*rm 1

11 continue

i dum = 1

tx t = mod(ial*ixl -Ic t , m l )

ix2 = mod(ia2*lx2 + ic2, m2)

ix3 = mod(la3*ix3 + le3, m3)



j = 1 + (97*ix3)/m3

if (j .gt. 97 .or. j .It. 1) pause

ran = r(j)

rei) = (r lcatt tx t ) + float(lx2)*rm2) * rml

return

end

c

c ** mini hops subroutine **
c

subroutine xm tntt.j.at.d.nurn 1)

integer d( 1000, 1000)

do 10 v = 1, st

if (dt t.v) .ne. 0) then

if (d(v,j) .ne. 0) then

if (d(i,j) .eq. 0) then

d(i,j) = du.v) +d(v,j)

num 1 = num 1 - 1

else

d(i,j) = mlnO(d(i,j)J (d(i,v) + d(v,j)))

end if

end if

end if

10 continue

return

end

64




